Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

نویسندگان

  • Jonathan Masci
  • Ueli Meier
  • Dan C. Ciresan
  • Jürgen Schmidhuber
چکیده

We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN with filters of a trained CAE stack yields superior performance on a digit (MNIST) and an object recognition (CIFAR10) benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Neural Networks for Iris Recognition System Based on Video: Stacked Sparse Auto Encoders (ssae) and Bi-propagation Neural Network Models

Iris recognition technique is now regarded among the most trustworthy biometrics tactics. This is basically ascribed to its extraordinary consistency in identifying individuals. Moreover, this technique is highly efficient because of iris’ distinctive characteristics and due to its ability to protect the iris against environmental and aging effects. The Problem statement of this work is that th...

متن کامل

Stacked What-Where Auto-encoders

We present a novel architecture, the “stacked what-where auto-encoders” (SWWAE), which integrates discriminative and generative pathways and provides a unified approach to supervised, semi-supervised and unsupervised learning without relying on sampling during training. An instantiation of SWWAE uses a convolutional net (Convnet) (LeCun et al. (1998)) to encode the input, and employs a deconvol...

متن کامل

Transfer Learning with Deep Convolutional Neural Network for SAR Target Classification with Limited Labeled Data

Tremendous progress has been made in object recognition with deep convolutional neural networks (CNNs), thanks to the availability of large-scale annotated dataset. With the ability of learning highly hierarchical image feature extractors, deep CNNs are also expected to solve the Synthetic Aperture Radar (SAR) target classification problems. However, the limited labeled SAR target data becomes ...

متن کامل

Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification

This paper presents a stacked sparse auto-encoder (SSAE) based deep learning method for an electronic nose (e-nose) system to classify different brands of Chinese liquors. It is well known that preprocessing; feature extraction (generation and reduction) are necessary steps in traditional data-processing methods for e-noses. However, these steps are complicated and empirical because there is no...

متن کامل

Training Auto-encoders Effectively via Eliminating Task-irrelevant Input Variables

Auto-encoders are often used as building blocks of deep network classifier to learn feature extractors, but task-irrelevant information in the input data may lead to bad extractors and result in poor generalization performance of the network. In this paper,via dropping the task-irrelevant input variables the performance of auto-encoders can be obviously improved .Specifically, an importance-bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011